Canonical Quantization of Symplectic Vector Spaces over Finite Fields

نویسندگان

  • SHAMGAR GUREVICH
  • RONNY HADANI
چکیده

In this paper an affirmati5e answer is given to a question of D. Kazhdan on the existence of a canonical Hilbert spaces attached to symplectic vector spaces over finite fields. This result suggest a solution to a discrete analogue of a well known problem in geometric quantization where a naive canonical Hilbert space does not exist. As a result, a canonical model for the Weil representation of the associated symplectic groups is obtained. Our construction use an idea suggested to us by J. Bernstein on the notion of enhanced Lagrangian subspace over a finite field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Canonical Quantization of Symplectic Vector Spaces over Finite Fields

In these notes we construct a quantization functor, associating a Hilbert space H(V ) to a finite dimensional symplectic vector space V over a finite field Fq. As a result, we obtain a canonical model for the Weil representation of the symplectic group Sp (V ). The main technical result is a proof of a stronger form of the Stonevon Neumann theorem for the Heisenberg group over Fq. Our result an...

متن کامل

Quantization of Symplectic Vector Spaces over Finite Fields

In this paper, we construct a quantization functor, associating a complex vector space H(V ) to a finite dimensional symplectic vector space V over a finite field of odd characteristic. As a result, we obtain a canonical model for the Weil representation of the symplectic group Sp (V ). The main new technical result is a proof of a stronger form of the Stone-von Neumann property for the Heisenb...

متن کامل

Notes on quantization of symplectic vector spaces over finite fields

In these notes we construct a quantization functor, associating an Hilbert space H(V ) to a finite dimensional symplectic vector space V over a finite field Fq. As a result, we obtain a canonical model for the Weil representation of the symplectic group Sp (V ). The main technical result is a proof of a stronger form of the Stone-von Neumann theorem for the Heisenberg group over Fq. Our result ...

متن کامل

Northern California Symplectic Geometry Seminar

If P and P’ are two symplectic polydisks, then there are two well-known obstructions to embedding P into P’: the total volume and Gromov’s non-squeezing theorem. We prove that up to a constant factor these are the only obstructions. This talk will focus on putting the result in context. We will look at it from the point of view of symplectic capacities, from the point of view of Riemannian geom...

متن کامل

Geometric Quantization and No Go Theorems

A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005